Engineering applications of the modulated scatterer technique / Jean-Charles Bolomey, Fred E. Gardiol

By: Bolomey, J. C. (Jean-Charles)Contributor(s): Gardiol, Fred EMaterial type: TextTextLanguage: English Series: Publication details: Boston : Artech House, 2001Description: xxii, 255 pages : illustrations ; 24 cmContent type: 36 ISBN: 1580531474; 9781580531474Subject(s): Microwave measurements | Electromagnetic waves -- Scattering | Modulation (Electronics) | Radio | RadarDDC classification: 621.3813 LOC classification: TK7876 | .B63 2001
Contents:
1.1 Where Near-Field Measurements Are Useful 1 -- 1.1.1 Information Provided by Near-Field Maps 1 -- 1.1.2 Near-Field Diagnostics 2 -- 1.1.3 Measurements May Perturb the Near-Fields 2 -- 1.1.4 Modulated Scatterer Approach 2 -- 1.1.5 Basic Requirement 3 -- 1.1.6 Near-to-Far-Field Transformations 3 -- 1.1.7 Two Sets of Applications of Modulated Scatterers 3 -- 1.2 Near-Field Basics 4 -- 1.2.1 Some Definitions for Free-Space Radiation of Antennas 4 -- 1.2.2 Extension to Small Antennas and Circuits 5 -- 1.2.3 About the Near Field Within Inhomogeneous Structures 6 -- 1.2.4 Remark 6 -- 1.3 Various Kinds of Measurements 7 -- 1.3.1 Standard Circuit Measurements 7 -- 1.3.2 Standard Antenna Measurements 7 -- 1.3.3 Direct Near-Field Measurement 8 -- 1.3.4 Perturbation Techniques for Indirect Measurements 9 -- 1.3.5 Cavity Perturbation 9 -- 1.3.6 Perturbation Measurement of SAR in Phantoms 10 -- 1.3.7 Perturbation by a Scatterer 10 -- 1.3.8 Measurement of the Far-Field Pattern of an Antenna 11 -- 1.4 Modulated Scatterer Technique 11 -- 1.4.1 Spinning Dipole 11 -- 1.4.2 Electrically Modulated Scatterer 11 -- 1.4.3 Historical Landmarks 12 -- 1.4.4 Comparison of Direct and Indirect Measurements 13 -- 1.4.5 Tagging Systems and Transponders 13 -- 1.4.6 Biologically Modulated Scatterers 15 -- 1.5 About Computer Simulation And Measurement 17 -- 1.6 Field Maps 18 -- 1.6.1 Microstrip Directional Coupler 18 -- 1.6.2 Printed Patch Antenna 20 -- 1.6.3 Measurements of Large Antennas 22 -- 1.6.4 EMC 24 -- 1.6.5 Dosimetry 25 -- 1.6.6 Microwave Tomography 27 -- Chapter 2 Basic Scatterer Electromagnetics -- 2.1.1 Effects Produced by a Field on a Probe 35 -- 2.1.2 Probe Characteristics in the Receiving Mode 36 -- 2.1.3 Probe Characteristics in the Scattering Mode 36 -- 2.1.4 Bistatic Operation 37 -- 2.1.5 Monostatic Operation 38 -- 2.1.6 Definition of the Nominal Environment 38 -- 2.1.7 Radar Analogy 39 -- 2.1.8 Power Considerations 40 -- 2.1.9 Comparison of Monostatic and Bistatic Operations 40 -- 2.1.10 Practical Considerations 40 -- 2.2 Principle Of Modulated Scattering 41 -- 2.2.1 Modulated Scatterers 41 -- 2.2.2 Mechanically Modulated Scatterers 42 -- 2.2.3 Electrically Modulated Scatterers 43 -- 2.2.4 Optically Modulated Scatterers 44 -- 2.2.5 Light Beam on Photosensitive Material 45 -- 2.2.6 Comparison of the Modulation Schemes 46 -- 2.2.7 Properties of the MST 46 -- 2.3 Equivalent Multiport Representation 47 -- 2.3.1 Equivalent Linear Black Box 47 -- 2.3.2 "Good" and "Bad" Obstacles 48 -- 2.3.3 Matrix Formulations 49 -- 2.3.4 Impedance Matrix 49 -- 2.3.5 Admittance Matrix 50 -- 2.3.6 Relationships Between [Z] and [Y] Matrices 50 -- 2.4 Scattering Matrix Formulation 51 -- 2.4.1 Complex Normalized Waves 51 -- 2.4.2 Scattering Matrix of an N-Port Device 52 -- 2.4.3 Translation of the Reference Planes 52 -- 2.4.4 Relationships Between Matrices 53 -- 2.4.5 Remark 54 -- 2.4.6 Scattering Matrix for the Monostatic Setup (N = 2) 54 -- 2.4.7 Scattering Matrix for the Bistatic Setup (N = 3) 56 -- 2.4.8 Extension to Configurations for Which N> 3 57 -- 2.4.9 Remark About Matrix Formulations 58 -- Chapter 3 Modulated Scattering Probes -- 3.1 Probe Response In Various Situations 61 -- 3.1.1 Probe Response in the Receiving Mode 61 -- 3.1.2 Monostatic Reflection Factor 63 -- 3.1.3 Monostatic Impedance and Admittance Changes 64 -- 3.1.4 Reflection from a Matched Probe 64 -- 3.1.5 Reflection Factor in the Unmodulated Situation 65 -- 3.1.6 Reflection Factor with Mechanical Modulation 65 -- 3.1.7 Reflection Factor with Electrical Modulation 65 -- 3.1.8 Bistatic Transmission Factor 67 -- 3.1.9 Introduction of a Generalized Term 68 -- 3.2 Calculation Of The Probe Response 68 -- 3.2.1 Reciprocity Theorem 68 -- 3.2.2- Reciprocity Formulation 71 -- 3.2.3 Conjugate Matched Probe in the Monostatic Case 73 -- 3.2.4 Reflectionless Matched Probe in the Monostatic Case 73 -- 3.2.5 Modulated Probe in the Monostatic Case 74 -- 3.2.6 Modulated Probe in the Bistatic Case 75 -- 3.3 Free-Space Measurements 76 -- 3.3.1 Locally Plane Waves 76 -- 3.3.2 Absorption Cross Sections 77 -- 3.3.3 RCS for Monostatic Setups 78 -- 3.3.4 Active or Passive Transponder 79 -- 3.3.5 RCS for Bistatic Setups 79 -- 3.4 Probes Used For Near-Field Testing 80 -- 3.4.1 Main Kinds of Probes 80 -- 3.4.2 Small Probes 81 -- 3.4.3 Short Electric Dipoles 81 -- 3.4.4 Small Magnetic Loops 84 -- 3.4.5 Tuned Probes 86 -- 3.4.6 Small Reflecting Spheres 87 -- Chapter 4 Moving Probe Setups -- 4.1 Low Invasiveness 91 -- 4.1.1 Basic Probe Requirements 91 -- 4.1.2 Why a Monostatic Rather Than a Bistatic Configuration? 92 -- 4.1.3 Description of a Measurement Configuration 92 -- 4.1.4 Optical Modulation 93 -- 4.1.5 Low-Frequency Connections with Resistive Wires 94 -- 4.1.6 Coherent Detection 94 -- 4.1.7 Number of Measurement Points 95 -- 4.1.8 About the Measurement Time 95 -- 4.2 Probes For Field Measurements 96 -- 4.2.1 Probes for Direct Antenna Measurements 96 -- 4.2.2 Probes for EMC Measurements 97 -- 4.2.3 Probes for Dosimetry 97 -- 4.2.4 Components of Modulated Scatterer Probes 98 -- 4.2.5 Probe for the Transverse Electric Field 98 -- 4.2.6 Probe for the Normal Electric Field 99 -- 4.2.7 Probe for the Transverse Magnetic Field 100 -- 4.2.8 Optically Modulated Probes 100 -- 4.3 Receivers For MST Arrangements 101 -- 4.3.1 Homodyne Receiver 101 -- 4.3.2 Remark About the Homodyne Receiver's Design 102 -- 4.3.3 Mathematical Background 102 -- 4.3.4 Cancellation of Unmodulated Signals 103 -- 4.3.5 Selection of the Modulation Frequency 104 -- 4.3.6 Signal-to-Noise Ratio 105 -- 4.4 About Measurement Accuracy 106 -- 4.4.1 Spatial Resolution 106 -- 4.4.2 Spurious Signals 108 -- 4.4.3 Close Range Interaction 108 -- 4.4.4 Close Range Interaction with Dielectric 110 -- 4.4.5 Comparison with Simulations 111 -- 4.4.6 Dynamic Range 112 -- 4.4.7 Caution: High Accuracy Is Not Always Required! 113 -- 4.4.8 Scaled Models and the Similitude Theorem 114 -- 4.5 Field Measurements In Materials 115 -- 4.5.1 Impact of Probe Immersion on Measurement Sensitivity 115 -- 4.5.2 Total-Field Measurement with Modulated Probes 116 -- 4.5.3 Total-Field Measurement with Unmodulated Probes 116 -- 4.6 Optical Analogy With Near-Field Microscopy 117 -- 4.6.1 Scanning Near-Field Optical Microscopy 117 -- 4.6.2 Microwave Near-Field Microscopy 118 -- Chapter 5 Applications of Single Probes -- 5.1 Description Of Some MST Test Setups 123 -- 5.1.1 National Physical Laboratory 123 -- 5.1.2 Swiss Ecole Polytechnique Federale of Lausanne 125 -- 5.1.3 University of Michigan at Ann Arbor 126 -- 5.1.4 Other Laboratories 127 -- 5.2 Antenna Diagnostics 128 -- 5.2.1 Horn Antennas 128 -- 5.2.2 Microstrip Patch Antennas 130 -- 5.2.3 Patch Antennas with Parasitic Elements 131 -- 5.2.4 PIFA Dual Band Antennas 132 -- 5.2.5 Multifrequency Multiband Antennas 132 -- 5.2.6 Near-Field Diffraction by Two Slits 133 -- 5.3 Printed Transmission Lines And Circuits 135 -- 5.3.1 Wilkinson Power Dividers 135 -- 5.3.2 Branch Line Hybrid Couplers 135 -- 5.3.3 Rat Race Hybrid Rings 136 -- 5.3.4 Meander Transmission Lines 136 -- 5.3.5 Microstrip Filters with Holes in the Ground Plane 138 -- 5.3.6 MMICs 141 -- 5.3.7 Radiating Probe for Microstrip Integrated Amplifier 141 -- 5.3.8 Currents on a Whisker Mixer for Radiometry 142 -- 5.4 Guiding Structures 144 -- 5.4.1 Detection of Electric-Field Lines in a Liquid Microstrip 144 -- 5.4.2 Fields in a Rectangular Waveguide 146 -- 5.5 EMC 147 -- 5.6 Industrial8 Applications 148 -- 5.6.1 Microwave and RF Heating 148 -- 5.6.2 Industrial Microwave and RF Heating 148 -- 5.6.3 Modulated Scatterer Moisture Sensors 149 -- 5.6.4 Near-Field Measurement in High-Power Systems 149 -- 5.7 Medical Applications And Dosimetry 152 -- 5.7.1 Diathermy and Hyperthermia 152 -- 5.7.2 Portable Phones 152 -- 5.7.3 Measurement of the SAR 153 -- 5.7.4 Radiometric Measurements 154 -- 5.7.5 SAR Measurement of Portable Phones 155 -- 5.7.6 Hyperthermia Applicator and Probe Characterization 157 -- Chapter 6 Probe Arrays -- 6.1.1 Reduction of the Duration of Measurements 161 -- 6.1.2 Reduction of the Amount of Measured Data 162 -- 6.1.3 Speeding Up the Measurement Rate 162 -- 6.1.4 Measurement Strategies 163 -- 6.2 Specific Features Of Probe Arrays 164 -- 6.2.1 Choice of Architectures 164 -- 6.2.2 Preconceptions 166 -- 6.2.3 Probe Array Arrangements 167 -- 6.2.4 Spatial Sampling Requirements 169 -- 6.3 MST For Arrays 170 -- 6.3.1 Array Elements 170 -- 6.3.2 Sensitivity of Collector Arrangements 171 -- 6.3.3 Uniformity of Collector Arrangements 173 -- 6.3.4 Calibrating the Probe Array and Collector Arrangements 176 -- 6.3.5 Practical Bistatic Realizations 178 -- 6.3.6 Different Modulation Possibilities 180 -- 6.3.7 Direct Determination of the Far-Field Pattern 181 -- 6.3.8 Focusing at an Arbitrary Finite Distance 183 -- Chapter 7 Applications of Probe Arrays -- 7.1 Communications And Radar Antenna Testing 187 -- 7.1.1 Antenna Testing Background 187 -- 7.1.2 Near-Field Versus Direct Measurement Techniques 189 -- 7.1.3 Selecting the Proper Near-Field Setup 189 -- 7.1.4 Linear Probe Arrays 191 -- 7.1.5 Planar Probe Arrays 195 -- 7.1.6 Circular Probe Arrays 197 -- 7.1.7 Direct Probing of the Far-Field Pattern 200 -- 7.2 RCS Measurements 202 -- 7.2.1 About Radar Testing 202 -- 7.2.2 Practical Implementation 203 -- 7.3 EMC Testing 205
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Call number Status Date due Barcode Item holds
Books Books School of Engineering and Technology
School of Engineering and Technology
621.3813 BJE (Browse shelf (Opens below)) Available 2212
Total holds: 0

Includes bibliographical references and index.

1.1 Where Near-Field Measurements Are Useful 1 -- 1.1.1 Information Provided by Near-Field Maps 1 -- 1.1.2 Near-Field Diagnostics 2 -- 1.1.3 Measurements May Perturb the Near-Fields 2 -- 1.1.4 Modulated Scatterer Approach 2 -- 1.1.5 Basic Requirement 3 -- 1.1.6 Near-to-Far-Field Transformations 3 -- 1.1.7 Two Sets of Applications of Modulated Scatterers 3 -- 1.2 Near-Field Basics 4 -- 1.2.1 Some Definitions for Free-Space Radiation of Antennas 4 -- 1.2.2 Extension to Small Antennas and Circuits 5 -- 1.2.3 About the Near Field Within Inhomogeneous Structures 6 -- 1.2.4 Remark 6 -- 1.3 Various Kinds of Measurements 7 -- 1.3.1 Standard Circuit Measurements 7 -- 1.3.2 Standard Antenna Measurements 7 -- 1.3.3 Direct Near-Field Measurement 8 -- 1.3.4 Perturbation Techniques for Indirect Measurements 9 -- 1.3.5 Cavity Perturbation 9 -- 1.3.6 Perturbation Measurement of SAR in Phantoms 10 -- 1.3.7 Perturbation by a Scatterer 10 -- 1.3.8 Measurement of the Far-Field Pattern of an Antenna 11 -- 1.4 Modulated Scatterer Technique 11 -- 1.4.1 Spinning Dipole 11 -- 1.4.2 Electrically Modulated Scatterer 11 -- 1.4.3 Historical Landmarks 12 -- 1.4.4 Comparison of Direct and Indirect Measurements 13 -- 1.4.5 Tagging Systems and Transponders 13 -- 1.4.6 Biologically Modulated Scatterers 15 -- 1.5 About Computer Simulation And Measurement 17 -- 1.6 Field Maps 18 -- 1.6.1 Microstrip Directional Coupler 18 -- 1.6.2 Printed Patch Antenna 20 -- 1.6.3 Measurements of Large Antennas 22 -- 1.6.4 EMC 24 -- 1.6.5 Dosimetry 25 -- 1.6.6 Microwave Tomography 27 -- Chapter 2 Basic Scatterer Electromagnetics -- 2.1.1 Effects Produced by a Field on a Probe 35 -- 2.1.2 Probe Characteristics in the Receiving Mode 36 -- 2.1.3 Probe Characteristics in the Scattering Mode 36 -- 2.1.4 Bistatic Operation 37 -- 2.1.5 Monostatic Operation 38 -- 2.1.6 Definition of the Nominal Environment 38 -- 2.1.7 Radar Analogy 39 -- 2.1.8 Power Considerations 40 -- 2.1.9 Comparison of Monostatic and Bistatic Operations 40 -- 2.1.10 Practical Considerations 40 -- 2.2 Principle Of Modulated Scattering 41 -- 2.2.1 Modulated Scatterers 41 -- 2.2.2 Mechanically Modulated Scatterers 42 -- 2.2.3 Electrically Modulated Scatterers 43 -- 2.2.4 Optically Modulated Scatterers 44 -- 2.2.5 Light Beam on Photosensitive Material 45 -- 2.2.6 Comparison of the Modulation Schemes 46 -- 2.2.7 Properties of the MST 46 -- 2.3 Equivalent Multiport Representation 47 -- 2.3.1 Equivalent Linear Black Box 47 -- 2.3.2 "Good" and "Bad" Obstacles 48 -- 2.3.3 Matrix Formulations 49 -- 2.3.4 Impedance Matrix 49 -- 2.3.5 Admittance Matrix 50 -- 2.3.6 Relationships Between [Z] and [Y] Matrices 50 -- 2.4 Scattering Matrix Formulation 51 -- 2.4.1 Complex Normalized Waves 51 -- 2.4.2 Scattering Matrix of an N-Port Device 52 -- 2.4.3 Translation of the Reference Planes 52 -- 2.4.4 Relationships Between Matrices 53 -- 2.4.5 Remark 54 -- 2.4.6 Scattering Matrix for the Monostatic Setup (N = 2) 54 -- 2.4.7 Scattering Matrix for the Bistatic Setup (N = 3) 56 -- 2.4.8 Extension to Configurations for Which N> 3 57 -- 2.4.9 Remark About Matrix Formulations 58 -- Chapter 3 Modulated Scattering Probes -- 3.1 Probe Response In Various Situations 61 -- 3.1.1 Probe Response in the Receiving Mode 61 -- 3.1.2 Monostatic Reflection Factor 63 -- 3.1.3 Monostatic Impedance and Admittance Changes 64 -- 3.1.4 Reflection from a Matched Probe 64 -- 3.1.5 Reflection Factor in the Unmodulated Situation 65 -- 3.1.6 Reflection Factor with Mechanical Modulation 65 -- 3.1.7 Reflection Factor with Electrical Modulation 65 -- 3.1.8 Bistatic Transmission Factor 67 -- 3.1.9 Introduction of a Generalized Term 68 -- 3.2 Calculation Of The Probe Response 68 -- 3.2.1 Reciprocity Theorem 68 -- 3.2.2- Reciprocity Formulation 71 -- 3.2.3 Conjugate Matched Probe in the Monostatic Case 73 -- 3.2.4 Reflectionless Matched Probe in the Monostatic Case 73 -- 3.2.5 Modulated Probe in the Monostatic Case 74 -- 3.2.6 Modulated Probe in the Bistatic Case 75 -- 3.3 Free-Space Measurements 76 -- 3.3.1 Locally Plane Waves 76 -- 3.3.2 Absorption Cross Sections 77 -- 3.3.3 RCS for Monostatic Setups 78 -- 3.3.4 Active or Passive Transponder 79 -- 3.3.5 RCS for Bistatic Setups 79 -- 3.4 Probes Used For Near-Field Testing 80 -- 3.4.1 Main Kinds of Probes 80 -- 3.4.2 Small Probes 81 -- 3.4.3 Short Electric Dipoles 81 -- 3.4.4 Small Magnetic Loops 84 -- 3.4.5 Tuned Probes 86 -- 3.4.6 Small Reflecting Spheres 87 -- Chapter 4 Moving Probe Setups -- 4.1 Low Invasiveness 91 -- 4.1.1 Basic Probe Requirements 91 -- 4.1.2 Why a Monostatic Rather Than a Bistatic Configuration? 92 -- 4.1.3 Description of a Measurement Configuration 92 -- 4.1.4 Optical Modulation 93 -- 4.1.5 Low-Frequency Connections with Resistive Wires 94 -- 4.1.6 Coherent Detection 94 -- 4.1.7 Number of Measurement Points 95 -- 4.1.8 About the Measurement Time 95 -- 4.2 Probes For Field Measurements 96 -- 4.2.1 Probes for Direct Antenna Measurements 96 -- 4.2.2 Probes for EMC Measurements 97 -- 4.2.3 Probes for Dosimetry 97 -- 4.2.4 Components of Modulated Scatterer Probes 98 -- 4.2.5 Probe for the Transverse Electric Field 98 -- 4.2.6 Probe for the Normal Electric Field 99 -- 4.2.7 Probe for the Transverse Magnetic Field 100 -- 4.2.8 Optically Modulated Probes 100 -- 4.3 Receivers For MST Arrangements 101 -- 4.3.1 Homodyne Receiver 101 -- 4.3.2 Remark About the Homodyne Receiver's Design 102 -- 4.3.3 Mathematical Background 102 -- 4.3.4 Cancellation of Unmodulated Signals 103 -- 4.3.5 Selection of the Modulation Frequency 104 -- 4.3.6 Signal-to-Noise Ratio 105 -- 4.4 About Measurement Accuracy 106 -- 4.4.1 Spatial Resolution 106 -- 4.4.2 Spurious Signals 108 -- 4.4.3 Close Range Interaction 108 -- 4.4.4 Close Range Interaction with Dielectric 110 -- 4.4.5 Comparison with Simulations 111 -- 4.4.6 Dynamic Range 112 -- 4.4.7 Caution: High Accuracy Is Not Always Required! 113 -- 4.4.8 Scaled Models and the Similitude Theorem 114 -- 4.5 Field Measurements In Materials 115 -- 4.5.1 Impact of Probe Immersion on Measurement Sensitivity 115 -- 4.5.2 Total-Field Measurement with Modulated Probes 116 -- 4.5.3 Total-Field Measurement with Unmodulated Probes 116 -- 4.6 Optical Analogy With Near-Field Microscopy 117 -- 4.6.1 Scanning Near-Field Optical Microscopy 117 -- 4.6.2 Microwave Near-Field Microscopy 118 -- Chapter 5 Applications of Single Probes -- 5.1 Description Of Some MST Test Setups 123 -- 5.1.1 National Physical Laboratory 123 -- 5.1.2 Swiss Ecole Polytechnique Federale of Lausanne 125 -- 5.1.3 University of Michigan at Ann Arbor 126 -- 5.1.4 Other Laboratories 127 -- 5.2 Antenna Diagnostics 128 -- 5.2.1 Horn Antennas 128 -- 5.2.2 Microstrip Patch Antennas 130 -- 5.2.3 Patch Antennas with Parasitic Elements 131 -- 5.2.4 PIFA Dual Band Antennas 132 -- 5.2.5 Multifrequency Multiband Antennas 132 -- 5.2.6 Near-Field Diffraction by Two Slits 133 -- 5.3 Printed Transmission Lines And Circuits 135 -- 5.3.1 Wilkinson Power Dividers 135 -- 5.3.2 Branch Line Hybrid Couplers 135 -- 5.3.3 Rat Race Hybrid Rings 136 -- 5.3.4 Meander Transmission Lines 136 -- 5.3.5 Microstrip Filters with Holes in the Ground Plane 138 -- 5.3.6 MMICs 141 -- 5.3.7 Radiating Probe for Microstrip Integrated Amplifier 141 -- 5.3.8 Currents on a Whisker Mixer for Radiometry 142 -- 5.4 Guiding Structures 144 -- 5.4.1 Detection of Electric-Field Lines in a Liquid Microstrip 144 -- 5.4.2 Fields in a Rectangular Waveguide 146 -- 5.5 EMC 147 -- 5.6 Industrial8 Applications 148 -- 5.6.1 Microwave and RF Heating 148 -- 5.6.2 Industrial Microwave and RF Heating 148 -- 5.6.3 Modulated Scatterer Moisture Sensors 149 -- 5.6.4 Near-Field Measurement in High-Power Systems 149 -- 5.7 Medical Applications And Dosimetry 152 -- 5.7.1 Diathermy and Hyperthermia 152 -- 5.7.2 Portable Phones 152 -- 5.7.3 Measurement of the SAR 153 -- 5.7.4 Radiometric Measurements 154 -- 5.7.5 SAR Measurement of Portable Phones 155 -- 5.7.6 Hyperthermia Applicator and Probe Characterization 157 -- Chapter 6 Probe Arrays -- 6.1.1 Reduction of the Duration of Measurements 161 -- 6.1.2 Reduction of the Amount of Measured Data 162 -- 6.1.3 Speeding Up the Measurement Rate 162 -- 6.1.4 Measurement Strategies 163 -- 6.2 Specific Features Of Probe Arrays 164 -- 6.2.1 Choice of Architectures 164 -- 6.2.2 Preconceptions 166 -- 6.2.3 Probe Array Arrangements 167 -- 6.2.4 Spatial Sampling Requirements 169 -- 6.3 MST For Arrays 170 -- 6.3.1 Array Elements 170 -- 6.3.2 Sensitivity of Collector Arrangements 171 -- 6.3.3 Uniformity of Collector Arrangements 173 -- 6.3.4 Calibrating the Probe Array and Collector Arrangements 176 -- 6.3.5 Practical Bistatic Realizations 178 -- 6.3.6 Different Modulation Possibilities 180 -- 6.3.7 Direct Determination of the Far-Field Pattern 181 -- 6.3.8 Focusing at an Arbitrary Finite Distance 183 -- Chapter 7 Applications of Probe Arrays -- 7.1 Communications And Radar Antenna Testing 187 -- 7.1.1 Antenna Testing Background 187 -- 7.1.2 Near-Field Versus Direct Measurement Techniques 189 -- 7.1.3 Selecting the Proper Near-Field Setup 189 -- 7.1.4 Linear Probe Arrays 191 -- 7.1.5 Planar Probe Arrays 195 -- 7.1.6 Circular Probe Arrays 197 -- 7.1.7 Direct Probing of the Far-Field Pattern 200 -- 7.2 RCS Measurements 202 -- 7.2.1 About Radar Testing 202 -- 7.2.2 Practical Implementation 203 -- 7.3 EMC Testing 205

There are no comments on this title.

to post a comment.

Powered by Koha